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Outline

1. Introduction to basic industrial plasmas
* Plasma medicine

L6
2. Breakdown and Paschen’s law
¢ Communication satellite
3. Sheath and plasma etching
* Microelectronics
L7

4. Plasma with insulating electrodes
* Large area displays/solar cells

Material
o See also EPFL MOOC “Plasma physics: Applications” #5a-g

» https://courses.edx.org/courses/course-v1:EPFLx+PlasmaApplicationX+1T 2018

o M. Lieberman & A. Lichtenberg, “Principles of plasma discharges and materials
processing”, Section 6.1-6.2
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=PFL Formation of a plasma

= Development from Townsend discharge to plasma glow and arc
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Outline

1. Introduction to basic industrial plasmas
* Plasma medicine
L6

2. Breakdown and Paschen’s law
 Communication satellite

3. Sheath and plasma etching
* Microelectronics

4. Plasma with insulating electrodes L7

* Large area displays/solar cells

Material
o See also EPFL MOOC “Plasma physics: Applications” #5a-g

» https://courses.edx.org/courses/course-v1:EPFLx+PlasmaApplicationX+1T 2018

o M. Lieberman & A. Lichtenberg, “Principles of plasma discharges and materials
processing”, Section 6.1-6.2
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=PFL  Reminder: Maxwell-Boltzmann
distribution

= Velocity distribution in an ideal gas in thermodynamic equilibrium
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=PFL  Reminder: Maxwell-Boltzmann
distribution

= Velocity distribution in an ideal gas in thermodynamic equilibrium
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=P*L  Formation of a sheath
|

n; |8eT; ion flux I ion flux

lon thermal flux I} = n; = = &
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Electron thermal flux T, = =N~ Ve _ e
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Electron thermal flux I, > lon thermal flux T;

virtual surface
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Formation of a sheath

= So far, the plasma was
always in isolation from its
environment

= However, a plasma-wall
interaction is unavoidable
and necessary for plasma
applications (deposition,
etching, surface
modifications, etc.)

ion flux I ion flux
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Formation of a sheath

= What happens, if the
virtual surface is replaced
with a conducting wall?

ion flux

|
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Conducting wall

=
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Formation of a sheath

= [ast electrons rush to the
wall, leaving behind a
layer of slower ions
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Formation of a sheath

Fast electrons rush to the
wall, leaving behind a
layer of slower ions

Plasma potential
increases until fluxes
become equal

k.

ion flux™. -
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Sheath

=
w

H. Reimerdes



=PrL

B Technology — L7 | 8-April-2025

Formation of a sheath

= Fast electrons rush to the
wall, leaving behind a
layer of slower ions

= Plasma potential
increases until fluxes
become equal

= Directional ion flux due to
sheath electric field

v
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Formation of a sheath

= \olume free of a net-charges

l Conducting wall

Sheath

=
(53]
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Some sheath properties

= Sheath provides transition between plasma and wall
= Positive space charge equal and opposite to negative surface charge

= Electric field guarantees ambipolar ion and electron fluxes to wall
(floating)
» Strong electric field and a positive ion flux, normal and directed towards the
wall
= Plasma potential is always positive with respect to most positive surface

= Thin layer, several Debye lengths thick, due to Debye screening of
sheath potential

=
(2]
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Plasma etch applications

Gas inlet
Main RF —

I

Substrate

= Uniform electric field above a substrate
= Vertical flux of ions
= Photoresist feature ~0.1um « sheath width (mm)

=
-
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Plasma etch applications

= Examples of high-aspect ratio etching

_ '\‘;"ﬂ,‘\ mask
3 ‘;“ 1‘\\‘“ — —
\“ k) substrate

Chemical etching: A + srfc[C] = AC
wet process

—— E—
isotropic etch
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Plasma etch applications (dry etching)

= Examples of high-aspect ratio etching

‘ W F‘“" X""W Reactive-ion etching: A + srfc[C] —» AC
- ! ‘1\‘ ‘\1:‘\\

- Directionality of ions crossing the sheath
provides anisotropic etching

dry process
ryp @

=l

vertical etch

i_

» Plasma processing is the only commercial
technology capable of such control and
indispensable for modern IC manufacturing!
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Plasma etch applications

Transistor density (mm?2)
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Year

® First p-n junction transistor — Shockley, Sparks, Teal - ~1951
® Basis for integrated circuits invented by Kilby and Noyce
® Early integrated circuits (1961 Fairchild camera) had 25 - 40 um feature sizes

® Number of transistors per circuit doubles every couple of years (Moore's law, 1965)
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Sheath potential (qualitative)

equipotential plasma

Vplasma

coldions,u =0

o U 1 u(x)

4 _N‘ ion spéed
AVpres}wazch

arbitrary 0:

sheathedge =~~~

A2

— Vwall

N
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L

lon velocity

s
equipotential plasma Ug | u(x) 4
Vplasma coldions, u = 0 N ion spaed
presheath
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= Conservation of ion energy crossing the sheath g —Vwai
(no collisions) g
1 2 1 2
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L

lon density

= Conservation of ion flux (no ionisation in sheath)

. . |
v equipotential plasma V(x) ug 1 u(x) 4
n —
plasma 5| d ions, u = 0 IN ion speed
presheath
. ! >
arbitrary 0} X
!
!
|
|
g
o/
]
el
|
8! —Vwau
%

nu = Ny

> Solve for n;

_ gus
ﬂ}(’{)r u(x)"

LAY,

elf&
1 Mg

N
~

H. Reimerdes



=Pr

B Technology — L7 | 8-April-2025

lon and electron densities

equipotential plasma ug | u@x) 1V
S
Vilasma coldions,u =0 AVWL ion speed
presheath
arbitrary 01} x
|
|
|
&
geoll
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. . c
= lon density in sheath *éi ol
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1 ZeV _0.5 0 € l ne - Tll W}{ ni‘e
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. bulk ol presheath |
= Electron density in ulk plasma |
sheath |
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Bohm'’s criterion

Gauss’s law
V-E=2
_ , _ _ d%v (n; —np)e  «— €0
= 1D Poisson’s equation in sheath dez

€0
= Substitute charge densities (see previous page)

4 2eV\ 7%
exp ?e - 1_Mu_§

= Taylor expand at the plasma-sheath interface
ﬂ _ &N 1 K 1 ev _ &M
dx2 g, * T,) +Mu§ N

* Require a physical, i.e. non-oscillatory solution >0

d?V  en,

2 =
dx o

1 e v
T, Mu?

»The ion speed at the sheath entrance is us > up = /% Bohm'’s criterion

N
(2]
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Bohm'’s criterion

eT,

= lon speed entering the sheath [ Us 2 Up = |7 }

»The ion velocity depends on the electron temperature

»The ions are accelerated to an energy %Mul% = eT,/2 in the presheath
— the presheath potential drop is Vpresheath = Te/2

> The electron, hence, plasma density at the sheath edge is

ng = Ny exp(_Vpresheath/Te) = nOe_O'5 = 0.61n,

N
By
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Re-visit potential and
density profiles
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Bohm’s consequence #1: ion flux
and etch rate

, . . eTy . . . .
= Bohm's criterion ug = /7 applies in all cases since the maximum

potential drop in the pre-sheath cannot be > T,/2 (Debye screening)

= Collision-less sheath: ion flux into sheath = ion flux to the wall

eT, eT,
[} = nyug = ng o ~ 0.61n, M

* If the wall is electrical floating, there is no current to the wall: T; =T,

> The ion flux controls the etch rate - plasma density & electron
temperature

« Equally applies for a negatively biased wall j;,; = el;

N
©
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=PFL  Bohm’s consequence #2: ion

w
o

bombardment energy
= For a floating wall
! U, |74 n\ _ 1 8eTe Vwall
I = nsil_s’, =T, = Zene,wall = 4 nseXp( VT\:: > 4 ’ﬂme Ms€xP T,
veT./M
» Potential drop in the sheath vy, = -y, = L In M
2 2mm,

= Total ion energy - M
& = e(Vplasma - Vwall) = e(Vpre—sheath + VS) .){"'Ar F.Crb

[ )| )

~—In
2mm 2.3m
e e 5‘1:52 J{

2

Is controlled by ion mass and electron temperature
« Can be increased by biasing!
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Bohm’s consequence #2: ion
bombardment energy

= Increase ion energy by a negative bias of the wall (= electrode)

Plasma in front of an electrode

r\_,l‘.‘ f—
. /
L > Y '
- ® ‘ | Ed, ft-M{ :
caklode . ’

gl

» Bias drives a current up to jgut
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Summary of sheaths and plasma
etching

Sheath formation due to fact that
electron mobility > ion mobility

Deduce basic properties of a sheath

Directional ions in plasma etching indispensable for IC manufacturing

Bohm velocity for ions into a sheath

__ |eTe
UB =\ m

lon flux to a wall (controls etch rate)

I = 0.61n, /%

& = e—zTe In (z.éwme) ~5.2eT,

lon energy to a wall

w
N
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Outline - Industrial plasmas

1. Introduction to basic industrial plasmas
* Plasma medicine

L8
2. Breakdown and Paschen’s law
« Communication satellite
3. Sheath and plasma etching
* Microelectronics
L9

4. Plasma with insulating electrodes
* RF —radio frequency, large area for solar cells

Material

o See also EPFL MOOC “Plasma physics: Applications” #5a-g

* https://courses.edx.org/courses/course-v1:EPFLx+PlasmaApplicationX+1T 2018

w
w
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Canwe use DC (Direct Current) for

all plasma processing?
DC power supply _
|+ l. = The current everywhere is a
A || > conduction current due to
i moving charges
» Electrons in the external circuit
a e N\ * Free ions and electrons in the
positve 1ons 0
® plasma
® 8
E electrons e~ o
% @©
N )

DC self-sustaining discharge

w
iy
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Consider an insulating layer on an

electrode

voltage Vpc
I~
A I |
[
(, o )
positive ions 0
®
w_ S
8 electrons e~ 9
% @®©
/

/

Substrate surface potential

“t

"RC charging of a capacitor"

R Y/ S—

= Close the switch at time t=0
- Plasma breaks down
- lons arrive at the glass surface
- The insulating surface charges up
- The surface voltage rises
- The discharge voltage falls

glass substrate, or an insulating film (SiO,), etc. - The E-field is too low for ionization

This is a dielectric barrier

- The discharge current falls to zero

w
(5]
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Need to use AC (Altemating Current)
for continuous plasma processing

w
(o))
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AC power supply

A
i \_/
(. - I
positive ions 0
@
electrons e~
o )

AC self-sustaining discharge

= An insulating surface is
alternately charged up, then
discharged by the opposite field
direction
- Typical plasma density ~5 - 1016m™3
- lon plasma frequency
zirr\/:()_TI\Z/I~ 2 MHz

- Electron plasma frequency
= ne? 500 MHz
2 EgmMe
= At the industrial (ISM)

frequency 13.56 MHz

- Electrons can follow the E-field

- lons only see the time-averaged E-
field

H. Reimerdes



=7L  RF (radio-frequency) capacitively-coupled
plasma for plasma processing
AC power supply

Simplified equivalent

i circuit for plasma
I RF
A c

-i% 1

= RF current in circuit and plasma is a conduction current (moving charges)

sheath
sheath

)
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= RF current in sheaths and the dielectric is a displacement current
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=PFL  Basics of radio-frequency plasma

| O ——

0V ground

= Plasma potential always positive

with respect to most positive
surface

4= - e, TEE VAR .
\% - » Time-averaged sheath
ormS V3 voltage
0 i t. = RF amplitude/2

o e /[ = Vop/t

5 12 ‘ '

: E N

5 e electrode gop ] ' |

> Method to chose ion energy ¢;~ V},,,/4 > useful for etch control

w
@
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Large area RF capacitively-coupled
reactors

= Concentrate on plasma processing for large area electronics
 Thin film transistors for flat panel LCD displays
» Photovoltaic solar panels

= Swiss industries (historic)
» Balzers displays
« Unaxis Displays
« Unaxis Solar
» Oerlikon Solar/TEL Solar

w
©
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Plasma-Enhanced Chemical Vapour
Deposition (PECVD) of thin film silicon

black box
PECVD

C
o
(@))]
o
bt
©
>
e

J. Perrin, et al., Plasma Phys. Control. Fusion 42 (2000) B353
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=PFL  PECVD capacitive, parallel-plate RF reactor -
some typical specificities

Pre[W]
| f [MHZ]
valve
Plasma Box
T principle: . 33
Jacques Schmitt I

...... ’ pr‘ocess
pumps
g vacuum chamber
N
g RF connection  showerhead
2 RF electrode
5
|
pisma
2 as flow .
g g side
2 . - x . view
|

heating grounded box glass substrate

I
=
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Commercial reactors

Front and back View Photo of KAI 20-1200

cerlikon
solar

N
N

H. Reimerdes
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Substrate size trend

=PrL

TV
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??7? 45 cm wafers?

K

@ 8’ wafers
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Summary of plasma with insulating
electrodes

RF capacitively-coupled plasma

= Conduction current in plasma, displacement current in
sheaths/dielectric

= Industrial frequency 13.56MHz between ion and electron plasma
frequency

= Sheath voltage and ion energy V},_,,/4

»Large area, RF capacitively-coupled plasmas for solar cells

H. Reimerdes
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Dielectric Bamrier Discharge (DBD)
for the production of Ozone 0,

= Ozone is a powerful oxidizing agent, far stronger than O, (used for
sterilization of water on industrial scale)

= Ozone can be used for combustion reactions and combusting gases
- Provides higher temperatures than combusting in O,

= Ozone has a half-life of approximately a day at room temperature

H. Reimerdes
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Ozone production by plasma
chemistry

1. Plasma dissociation of oxygen
e+ 0, > 0+0+e

2. Ozon production by 3-body recombination
O+ 0,+M - 0; + M - 03 + M

with M being any third body to carry of excess energy

H. Reimerdes
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Ozon production by Dielectric Barrier
Discharge (DBD)

= High voltage 10 — 10*V causes local breakdown between the electrodes at
atmospheric pressure (10 — 10° electrons/cm?)

= A filamentary discharge occurs at this position with avalanche flow of
electrons (streamer) 100 — 1000 A/cm?

Dielectric surface charges up (100pC) and local voltage is reduced in ns
Arc extinguishes, but neighbouring arc can still strike
High voltage alternates at 50Hz to 100MHz
The dielectric 1) limits energy of individual discharges (mJ)
2) distributes the arcs over the entire area

l
i

H. Reimerdes
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Photograph of DBD arcs through
a transparent electrode

-

- wa®ram 'y

u“c‘.’».os;f. L 2 O

S 2N
b 3
3

-
.
-

&

‘.5"'
.

Fig. 3. End-on view of microdischarges in atmospheric-pressure air (original size: 6 cm x 6 cm,
exposure time: 20 ms).

a1
(5]
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Summary of plasma with insulating
electrodes

RF capacitively-coupled plasma
= Conduction current in plasma, displacement current in sheaths/dielectric
= Industrial frequency 13.56MHz between ion and electron plasma frequency

= Sheath voltage and ion energy V,_,,/4

> Large area, RF capacitively-coupled plasmas for solar cells

Dielectric Barrier Discharge

= Transient (ns), filamentary arcs, atmospheric pressure

> DBD Ozon generation for water purification

a
(2]
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Reminder: Maxwell-Boltzmann

distribution

a
@
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= Velocity distribution in an ideal gas in thermodynamic equilibrium
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3/2 M2
_ (s “2kgTs
f:g(v) <2nkBTS) €
| 2kpT,
 Most probable velocity: s = [T
S
. _ 8kpTs
* Mean velocity: Vs =
Tmg
_ 3kpT,
+ Root-mean-square velocity: Vrms,s = E

mg
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